Search results

Search for "atomic force acoustic microscopy (AFAM)" in Full Text gives 6 result(s) in Beilstein Journal of Nanotechnology.

Stochastic excitation for high-resolution atomic force acoustic microscopy imaging: a system theory approach

  • Edgar Cruz Valeriano,
  • José Juan Gervacio Arciniega,
  • Christian Iván Enriquez Flores,
  • Susana Meraz Dávila,
  • Joel Moreno Palmerin,
  • Martín Adelaido Hernández Landaverde,
  • Yuri Lizbeth Chipatecua Godoy,
  • Aime Margarita Gutiérrez Peralta,
  • Rafael Ramírez Bon and
  • José Martín Yañez Limón

Beilstein J. Nanotechnol. 2020, 11, 703–716, doi:10.3762/bjnano.11.58

Graphical Abstract
  • acoustic microscopy (AFAM) [1], bimodal AFM [15], resonance tracking-atomic force acoustic microscopy (RT-AFAM) [7], band excitation [10], dual-frequency resonance-tracking atomic force microscopy [16], nanomechanical spectroscopy [2], G-mode [17] and triple frequency atomic force microscopy [18]. Even
  • resonance frequencies are often labeled as acoustic or ultrasonic methods due to the frequency range of the vibrations involved (from 100 kHz to 3 MHz) [1][9][12]. Among them are ultrasonic force microscopy (UFM) [13], heterodyne force microscopy [14], ultrasonic atomic force microscopy (UAFM), atomic force
PDF
Album
Full Research Paper
Published 04 May 2020

Atomic force acoustic microscopy reveals the influence of substrate stiffness and topography on cell behavior

  • Yan Liu,
  • Li Li,
  • Xing Chen,
  • Ying Wang,
  • Meng-Nan Liu,
  • Jin Yan,
  • Liang Cao,
  • Lu Wang and
  • Zuo-Bin Wang

Beilstein J. Nanotechnol. 2019, 10, 2329–2337, doi:10.3762/bjnano.10.223

Graphical Abstract
  • the cell–substrate interface are two key properties influencing cell behavior. In this paper, atomic force acoustic microscopy (AFAM) is used to investigate the influence of substrate stiffness and substrate topography on the responses of L929 fibroblasts. This combined nondestructive technique is
  • for the tissue regeneration therapy in biomedicine. Keywords: atomic force acoustic microscopy (AFAM); cell growth; nanopattern; stiffness; SU-8 photoresist; topography; Introduction The interactions of cells with extracellular matrices (ECMs) play important roles in regenerative medicine and tissue
  • biomechanical studies [21]. Atomic force acoustic microscopy (AFAM) is a technique based on AFM for nondestructive imaging. This technique operates on a dynamic mode in which the AFM cantilever vibrates upon ultrasound excitation. Accordingly, AFAM shows the ability to measure nanomechanical properties and is
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2019

A robust AFM-based method for locally measuring the elasticity of samples

  • Alexandre Bubendorf,
  • Stefan Walheim,
  • Thomas Schimmel and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2018, 9, 1–10, doi:10.3762/bjnano.9.1

Graphical Abstract
  • on the equations established by Rabe [9] and Rabe et al. [10] for atomic force acoustic microscopy (AFAM) [11][12][13][14]. They describe the dynamics of a clamped cantilever elastically coupled with the sample surface at its tip end. These equations have the disadvantage of strongly depending on the
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2018

Advanced atomic force microscopy techniques III

  • Thilo Glatzel and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2016, 7, 1052–1054, doi:10.3762/bjnano.7.98

Graphical Abstract
  • Eva Roblegg and co-workers [20]. The local elastic stiffness and damping of individual phases in a titanium alloys was measured by using atomic force acoustic microscopy (AFAM) and mapping of contact-resonance spectra [21]. Another alloy, namely a Pt containing metallic glass, was characterized by AFM
PDF
Editorial
Published 21 Jul 2016

Mapping of elasticity and damping in an α + β titanium alloy through atomic force acoustic microscopy

  • M. Kalyan Phani,
  • Anish Kumar,
  • T. Jayakumar,
  • Walter Arnold and
  • Konrad Samwer

Beilstein J. Nanotechnol. 2015, 6, 767–776, doi:10.3762/bjnano.6.79

Graphical Abstract
  • . Physikalisches Institut, Georg-August-Universität, Friedrich Hund Platz 1, D-37077 Göttingen, Germany 10.3762/bjnano.6.79 Abstract The distribution of elastic stiffness and damping of individual phases in an α + β titanium alloy (Ti-6Al-4V) measured by using atomic force acoustic microscopy (AFAM) is reported
PDF
Album
Full Research Paper
Published 18 Mar 2015

Frequency, amplitude, and phase measurements in contact resonance atomic force microscopies

  • Gheorghe Stan and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2014, 5, 278–288, doi:10.3762/bjnano.5.30

Graphical Abstract
  • acoustic microscopy (AFAM) configuration [3]), such that the tip oscillation amplitude and its phase with respect to the excitation can be measured and converted into a loss and storage modulus. In contact resonance AFM (CR-AFM) [3][4][5][6][7][8][9] a similar setup is used, supplying the sinusoidal
  • dynamic AFM modes. Within the force modulation method [2], the tip and the sample are brought into contact at a prescribed tip–sample force setpoint (cantilever deflection setpoint, as in contact mode imaging) and the sample is excited with a sinusoidal oscillation in the vertical direction (atomic force
PDF
Album
Full Research Paper
Published 12 Mar 2014
Other Beilstein-Institut Open Science Activities